Holographic principle

August 20, 2013
2007 December 16

On

You think you know what holograms are? Think again. Once restricted to credit cards, postcards, and the occasional magazine cover, holograms are taking a great cosmic leap thanks to a new hypothesis called the holographic principle.

The holographic principle, simply put, is the idea that our three-dimensional reality is a projection of information stored on a distant, two-dimensional surface. Like the emblem on your credit card, the two-dimensional surface holds all the information you need to describe a three-dimensional object—in this case, our universe. Only when it is illuminated does it reveal a three-dimensional image.

This raises a number of questions: If our universe is a holographic projection, then where is the two-dimensional surface containing all the information that describes it? What “illuminates” that surface? Is it more or less real than our universe? And what would motivate physicists to believe something so strange? That answer to the final question has to do with black holes, which turn out to be the universe’s ultimate information-storage devices. But to understand why, we will have to take a journey to the very edge of a black hole.

It doesn’t matter which black hole we choose, because each one looks essentially the same. Only a handful of qualities distinguish them: mass, electric charge, and angular momentum. Once an observer knows these three things about a black hole, he or she knows all that can be known. Whether the black hole contains the remains of a thousand dead stars, or all the lost socks from every Laundromat in the galaxy; whether it is a billion years old or was born yesterday; all of this information is lost and inaccessible in a black hole. No matter what is inside a black hole or how those innards are arranged, a black hole will “look” just the same.

This strange quality give black holes something that physicists call maximal entropy. Entropy describes the number of different ways you can rearrange the components of something—“a system”—and still have it look essentially the same. The pages of a novel, as Brian Greene points out, have very low entropy, because as soon as one page is out of place, you have a different book. The alphabet has low entropy, too: Move one letter and any four-year-old can tell something is wrong. A bucket of sand, on the other hand, has high entropy. Switch this grain for that grain and no one would ever know the difference. Black holes, which look the same no matter what you put in them or how you move it about, have the highest entropy of all.

Entropy is also a measure of the amount of information it would take to describe a system completely. The entropy of ordinary objects—people, sand buckets, containers of gas—is proportional to their volume. Double the volume of a helium balloon, for instance, and its entropy will increase by a factor of eight. But in the 1970s, Stephen Hawking and Jacob Bekenstein discovered that the entropy of a black hole obeys a different scaling rule. It is proportional not to the black hole’s three-dimensional volume but to its two-dimensional surface area, defined here as the area of the invisible boundary called the event horizon. Therefore, while the actual entropy of an ordinary object—say, a hamburger—scales with its volume, the maximum entropy that could theoretically be contained in the space occupied by the hamburger depends not on the volume of the hamburger but on the size of its surface area. Physics prevents the entropy of the hamburger from ever exceeding that maximum: If one somehow tried to pack so much entropy into the hamburger that it reached that limit, the hamburger would collapse into a black hole.

Source: www.pbs.org
RELATED VIDEO
IRENE CAESAR: THE HOLOGRAPHIC PRINCIPLE
IRENE CAESAR: THE HOLOGRAPHIC PRINCIPLE
Negation of the Holographic principle
Negation of the Holographic principle
The Zenith Passage - Holographic Principle II: Convergence
The Zenith Passage - Holographic Principle II: Convergence ...
RELATED FACTS
Share this Post